
4810-1183 Approximation and Online Algorithms 

Lecture Note 4: Approximation Algorithm for Vertex Cover Problem 

Introduction 

On last week, we have introduced you an approximation algorithm for the knapsack problem. The algorithm 

looks very close to a greedy algorithm, an algorithmic paradigm where we will pick items in order of some 

“good” function until we cannot pick an item anymore. However, it is not exactly a greedy algorithm. At 

the end of the algorithm, we choose between two sets of strawberries. Actually, many approximation 

algorithms are devised based on that paradigm. We usually get an approximation algorithm by slightly 

modifying a greedy algorithm. 

 The greedy-algorithm-based is one of the two most common schemes for approximation algorithm, 

and we will study the other common scheme today. The scheme is called as deterministic rounding. 

Vertex Cover 

Let recall our discussion on social networks in Lecture Note 2. We have a set of persons 𝑉 and a set of 

friendships between two persons 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}. Suppose that we are spies from a particular country, 

and we want to track all information in a social network using social engineering. We will bribe a set of 

persons and make them reveal their communications with all friends. The bribing is very costly and we 

want to minimize the number of persons whom we bribe. 

 The problem in the previous paragraph can be formulized into the following optimization models: 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} 

Output:   Set 𝑆 ⊆ V (set of persons whom we bribe) 

Objective Function: Minimize |S| 

Constraint:  For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆 

 

Consider the above social network, where 𝑉 = {1,2,3,4} and 𝐸 = {{1,2}, {1,3}, {2,3}, {3,4}}. We can spy 

all the information if we bribe 1 and 3, and it is not possible to cover all communications by just one person. 

The optimal solution is 𝑆∗ = {1,3} and the optimal value is 𝑂𝑃𝑇 = 2. 

Again, the optimization model is NP-hard. To solve the problem, let define new variables 𝑥𝑖 for 

each 𝑖 ∈ 𝑉 . We have 𝑥𝑖 = 1  when 𝑖 ∈ 𝑆 , and 𝑥𝑖 = 0  otherwise. Suppose that 𝑉 = {1, … , 𝑛} . It is 

straightforward to see that 𝑥1, … , 𝑥𝑛 have an equivalent information with 𝑆. We can construct 𝑥1, … , 𝑥𝑛 

from 𝑆 and we can construct 𝑆 from 𝑥1, … , 𝑥𝑛. Because of that, we will output 𝐱 = [𝑥1, … , 𝑥𝑛]t instead of 

𝑆. 



Then, we have |𝑆| = ∑ 𝑥𝑖𝑖 , because, to |𝑆|, 𝑖 contributes 1 = 𝑥𝑖 when 𝑖 ∈ 𝑆 and 0 = 𝑥𝑖 otherwise. 

When 𝐜 = [1,1, … ,1]𝑡, we have |𝑆| = 𝐜𝑡𝐱. 

Consider the objective function of our optimization model. For all {𝑢, 𝑣} ∈ 𝐸, we want to have 𝑢 ∈

𝑆 or 𝑣 ∈ 𝑆. We want to have 𝑥𝑢 = 1 or 𝑥𝑣 = 1. That is equivalent to have 𝑥𝑢 + 𝑥𝑣 = 1 or 𝑥𝑢 + 𝑥𝑣 = 2, 

and the conditions can be written as 𝑥𝑢 + 𝑥𝑣 ≥ 1. In our previous example, we want to have the following 

conditions: 

𝑥1 + 𝑥2 ≥ 1 

𝑥1 + 𝑥3 ≥ 1 

𝑥2 + 𝑥3 ≥ 1 

𝑥3 + 𝑥4 ≥ 1 

The conditions can be rewritten to the following form: 
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], the condition is 𝐀𝐱 ≥ 𝐛. For the general case, we will have 𝐀 be a 

|𝐸| × |𝑉| matrix where each row is corresponding to a friendship and each column is corresponding to a 

person. At a row that is corresponding to a friendship {𝑢, 𝑣}, elements of 𝐀 is 1 only at the column of 

persons 𝑢, 𝑣. The elements will be 0 at the other columns. The vector 𝐛 is always be [1, 1, … , 1]𝑡. 

 By the notations above, we can reformulate our optimization model to the following:   

Input:   Matrix 𝐀, Vector 𝐛, 𝐜 

   Assumption: At each row of 𝐴, two of the elements are 1.  

                                                             The other elements are 0. All elements of 𝐛, 𝐜 are 1. 

Output:   Vector 𝐱 (all elements are 0 or 1) 

Objective Function: Minimize 𝐜𝑡𝐱 

Constraint:  𝐀𝐱 ≥ 𝐛 

The optimization model looks very close to linear programming. One might think that we can solve the 

optimization model using library like CPLEX®. There is only one difference: we require that 𝑥𝑖 must be 0 

or 1, but that difference makes us cannot use CPLEX® to solve the problem. Consider the previous example 

again. If we use CPLEX® to solve the problem without the conditions on 𝑥𝑖, the output could be 𝑥1 = 𝑥2 =

𝑥3 = 𝑥4 = 0.5. We know how to construct 𝑆 from 𝐱 when all 𝑥𝑖 are 0 or 1, but we do not how to do that 

when 𝑥𝑖 is not that 2 numbers. 

Rounding 

Now, let us consider the following optimization model, and call the problem as “fractional vertex cover”. 



Input:   Matrix 𝐀, Vector 𝐛, 𝐜 

   Assumption: At each row of 𝐴, two of the elements are 1.  

                                                             The other elements are 0. All elements of 𝐛, 𝐜 are 1. 

Output:   Vector 𝐱 (𝟎 ≤ 𝒙𝒊 ≤ 𝟏 for all 𝒊) 

Objective Function: Minimize 𝐜𝑡𝐱 

Constraint:  𝐀𝐱 ≥ 𝐛 

Instead of having 𝑥𝑖 ∈ {0,1}, we have 𝑥𝑖 ∈ [0,1]. Although a library for linear programming cannot solve 

our optimization models when the outputs must be within a discrete set, it theoretically works very well 

when the outputs must be within a single continuous set. Because of that, we can use a library for linear 

programming to solve the “fractional vertex cover”.   

Our algorithm is as follows: 

1: Use a library for linear programming to solve the  

   “fractional vertex cover”. Suppose that the output is 𝐱 = (𝑥1, … , 𝑥𝑛). 

2: For all 𝑖, let 𝑥𝑖
′ = 1 when 𝑥𝑖 ≥ 0.5, and 𝑥𝑖 = 0 otherwise.  

    Let 𝐱′ = (𝑥1
′ , … , 𝑥𝑛

′ ). 

3: Return 𝑥′ as an answer of the vertex cover problem. 

 We will prove the correctness of the above algorithm in the previous theorem. 

Theorem 1 An output of the algorithm 𝐱′ satisfies the constraint of vertex cover problem. 

Proof: Because the vector 𝐱 is a solution of the fractional vertex cover problem, we know that, for {𝑢, 𝑣} ∈

𝐸,  

𝑥𝑢 + 𝑥𝑣 ≥ 1. 

By the above inequality, we know that either 𝑥𝑢 or 𝑥𝑣 is not smaller than 0.5. If both of them are smaller, 

we will never have the summation larger than 1. By the rounding at line 2 of the algorithm, we know that 

either 𝑥𝑢
′  or 𝑥𝑣

′  are 1. For all {𝑢, 𝑣} ∈ 𝐸, we have 𝑥𝑢
′ + 𝑥𝑣

′ ≥ 1, which means that 𝐱′ satisfies the constraint 

of the vertex cover problem. 

    ∎ 

Let 𝑆𝑂𝐿 be the objective value of the output from our algorithm, denoted by 𝐱′, let 𝑂𝑃𝑇 be the 

optimal value, and 𝐱∗ be the optimal solution. 

We have the following theorem for the algorithm in the previous paragraph. 

Theorem 2 For any particular input, 𝑆𝑂𝐿 ≤ 2 ⋅ 𝑂𝑃𝑇. 

Proof: Let 𝐱 = (𝑥1, … , 𝑥𝑛) be the optimal solution for the fractional vertex cover problem. It is the vector 

in [0,1]𝑛 that minimizes 𝐜𝑡𝐱 when 𝐀𝐱 ≥ 𝐛. On the other hand, 𝐱∗ is the vector in {0,1}𝑛 that minimizes the 

𝐜𝑡𝐱 when 𝐀𝐱 ≥ 𝐛. Both of the vectors minimize the objective function with the same constraint, but 𝐱 is 

selected from a larger set. 𝐱 has more chance to minimizes the objective function. The objective value of 𝐱 

is better (thus smaller) than 𝐱∗, i.e. 𝐜𝑡𝐱 ≤ 𝐜𝑡𝐱∗. 



 Now, let consider the value of 𝑥𝑖
′. By the “rounding” at Line 2 of the algorithm, we have 𝑥𝑖

′ ≤ 2 ⋅

𝑥𝑖. Then, 

𝑆𝑂𝐿 = 𝐜𝑡𝐱′ = ∑ 𝑥𝑖
′

𝑖

≤ 2 ⋅ ∑ 𝑥𝑖

𝑖

= 2 ⋅ 𝐜𝑡𝐱 ≤ 2 ⋅ 𝐜𝑡𝐱∗ = 2 ⋅ 𝑂𝑃𝑇. 

    ∎ 

Approximation Algorithm for Minimization Problems 

In the previous lecture note, we work on the knapsack problem. There, we tried to “maximize” our 

happiness from strawberries. From the algorithm, we cannot have the maximum happiness as in an optimal 

solution, but we can prove 𝑆𝑂𝐿 ≥ 0.5 ⋅ 𝑂𝑃𝑇. An algorithm that can attain the inequality is called 0.5-

approximation algorithm.  

In the vertex cover problem, we are trying to “minimize” our cost. We cannot have the minimum 

cost as in an optimal solution. The objective value of our output, 𝑆𝑂𝐿, must be larger than 𝑂𝑃𝑇. However, 

we prove that 𝑆𝑂𝐿 is not larger than 2 ⋅ 𝑂𝑃𝑇. An algorithm that can attain that is called 2-approximation 

algorithm. 

We have 𝛼-approximation algorithm for both maximization and minimization problems. However, 

𝛼 < 1 for maximization problems and 𝛼 > 1 for minimization problems. 

Network Monitoring Problem 

Let consider a problem considered in [2]. Suppose again that we want to monitor all communications. Here, 

we do not have to bribe persons anymore because we are ISP. We have all communications passing our 

servers! However, it is quite costly to set up a monitoring tool at all servers, and we want to set up the tools 

at as least as servers possible. Our servers are connected so well that a communication will pass only of our 

two servers, ingress server (where the communication arrives) and forwarding server (where the 

communication is forwarded to other ISPs. 

 By the discussion at the previous paragraph, we have the following optimization model. 

Input: Number of servers 𝑛  

 Number of communications 𝑚 

Ingress servers for each communication 𝐼1, … , 𝐼𝑚 

Forward servers for each communication 𝑂1, … , 𝑂𝑚 

Output: Servers to set the monitoring tools 𝑆 ⊆ {1, … , 𝑛} 

Constraint: For all communications 𝑗, 𝐼𝑗 ∈ 𝑆 or 𝑂𝑗 ∈ 𝑆 

Objective Function:  Minimize |𝑆| 

The ingress and forward servers are equivalent in the above problem. Because of that, we can 

denote all information about a communication 𝑗 by {𝐼𝑗, 𝑂𝑗}, and restate the problem to the following way: 

Input: Set of servers 𝑉 = {1, … , 𝑛} 

Set of communications 𝐸 = {{𝐼1, 𝑂1}, … , {𝐼𝑚, 𝑂𝑚}} 

Output: 𝑆 ⊆ 𝑉 



Constraint: For all {𝐼𝑗, 𝑂𝑗} ∈ 𝐸, 𝐼𝑗 ∈ 𝑆 or 𝑂𝑗 ∈ 𝑆 

Objective Function:  Minimize |𝑆| 

The above optimization model is the vertex cover problem. We can use a 2-approximation algorithm to 

solve the problem. 

Exercises 

 
Question 1: Consider the above social network. If we want to solve the vertex cover problem for this 

network, which linear program should we have? 

Question 2: Modify the file .lp that you have made in Lecture 1 to have an LP in Question 1. Together with 

the display file you have in Lecture 1, run CPLEX in the website  

https://neos-server.org/neos/solvers/milp:CPLEX/LP.html 

to check what is the optimal solution for the fractional vertex cover problem. 

Question 3: From the optimal solution for the fractional vertex cover, what is our solution for the vertex 

cover problem based on the deterministic rounding technique and your answer in Question 2? Is it an 

optimal solution? If not, does it satisfy the inequality in Theorem 2? 

Question 4: Repeat the same process for the social network in Page 1. Do you get an optimal solution for 

the vertex cover by the deterministic rounding technique for the social network? If not, does your solution 

satisfy the inequality in Theorem 2? 

From the next question, consider the following situation: 

We want to monitor all communications in the social network as always. 

However, because monitoring all communications is too costly, we allow a 

number communications to be unobserved. That number of communications is 

given as an input k (So, if we have 𝑚 communications in the social network, we 

want to observe at least 𝑚 - k communications) 

Question 5: State inputs of this problem by a mathematical formulation.  

Question 6: State outputs of this problem by a mathematical formulation. 

Question 7: State constraints of this problem by a mathematical formulation. 

Question 8: State objective functions of this problem by a mathematical formulation. 

Question 9: Write a program for solving vertex cover problem based on the fact that an efficient 

algorithm for solving the optimization model in Questions 5 – 8 is given in a library. 

[AnswerOf1_2] YourOptimizationModel([AnswerOf1_1]); 

https://neos-server.org/neos/solvers/milp:CPLEX/LP.html


Sets VertexCover(Set V, Set E){ 

     //write your code for knapsack here 

} 

Question 10: Discuss why your optimization model is NP-hard based on your answer of Question 9. 

Question 11: Suppose that the number of unobserved communication is 1. What is the optimal solution 

and optimal value for your optimization model when the social network is as follows? 

 

From next question, we refer to a linear program such that an output 𝒙 must be a vector of integers as an 

integer program. In other words, given matrix 𝑨, vector 𝒃, and vector 𝒄, we want to find an integer vector 

𝒙 such that 𝑨𝒙 ≥ 𝒃 and 𝒄𝑡𝒙 is minimized. 

Question 2.2: Construct an integer program to solve an example in Question 2.1. What is matrix 𝑨, vector 

𝒃, and vector 𝒄 for this case? What is the optimal solution obtain from the linear program? 

Question 2.3: Generalize Question 2.2. Give an idea how to construct matrix 𝑨, vector 𝒃, and vector 𝒄 from 

an arbitrary input of this problem. (You need not to really construct the matrix and vectors. Just give the 

idea how to construct them.) 

From next question, we will consider your integer program in Question 2.3. However, we will not consider 

the condition that 𝒙 has to be an integer vector.  

Question 2.4: Consider the following social network. Suppose that the number of unobserved 

communication is 1. 

Explain why assigning 1/3 to all nodes in the output also provides a feasible solution to your linear program. 

Question 2.5: Explain why deterministic rounding in the class does not work for this problem. 

Question 2.6: Devise a deterministic rounding algorithm for this problem. 

Hint: Your algorithm need not to be 2-approximation algorithm and you can consider the number of 

unobserved communication during the rounding process. 

1 
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